2次元フーリエ変換

空間周波数の概念
 2次元フーリエ変換
 代表的な2次元フーリエ変換対
 2次元離散フーリエ変換

1

フーリエ変換と逆変換

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \exp\{-j2\pi(ux+vy)\} dxdy$$

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \exp\{-j2\pi(ux+vy)/N\}$$

$$f(x, y) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} F(u, y) \exp\{j2\pi(ux + vy)/N\}$$

2次元フーリエ変換の具体的なイメージ

離散系での説明

それでは $\exp\{-j2\pi(ux+vy)/N\}$ はどんなパターンか?

2次元フーリエ変換の具体的なイメージ

 $\exp\{-j2\pi(ux+vy)\} = \cos 2\pi(ux+vy) - j\sin 2\pi(ux+vy)$

のうち、実部 $\cos 2\pi(ux+vy)$ に注目して考える.

(u,v)は空間的な波の周波数
 を与える.
 ⇒『空間周波数』と呼ばれる.
 u:x方向の周波数成分

v: y方向の周波数成分

$$ux + vy = 0,1,2,...,n,...$$

において、 $y = 0$ とおくと
(すなわちx軸上に注目すると)、
 $ux = 0,1,2... \Leftrightarrow x = 0,1/u,2/u,...$
で $\cos(ux) = 1$ となる。
「 u が小さい」(今)「間隔が大きい」

空間周波数の例

演習

例題1

下の図に対応する余弦関数を式で書き なさい。ただし黒い線は1の値をもち、 余弦関数の最大値を描いているものと する。

また、その空間周波数の位置をuv平面 上に図示しなさい。

例題2

下図のA,B,Cの位置に対応する空間周 波数のパターン(xy面での余弦波 のパターン)をスケッチしなさい.

フーリエ変換演算のまとめ

フーリエの合成のデモ

フーリエの合成のデモ(つづき)

2次元フーリエ変換

空間周波数の概念 2次元フーリエ変換 代表的な2次元フーリエ変換対 2次元離散フーリエ変換

代表的な2次元フーリエ変換対(1)

2変数のデルタ関数:

 $\delta(x, y): x = 0, y = 0$ で無限大になり、他で〇の関数.

 $f(x, y) = \delta(x, y) \Leftrightarrow F(u, v) = 1$

代表的な2次元フーリエ変換対(2)

 $f(x, y) = \operatorname{rect}(x)\operatorname{rect}(y) \Leftrightarrow F(u, v) = \operatorname{sinc}(u)\operatorname{sinc}(v)$

代表的な2次元フーリエ変換対(3)

2次元フーリエ変換の計算例-短形1-

$$f(x, y) = \operatorname{rect}(\frac{x}{a})\operatorname{rect}(\frac{y}{b}) \Leftrightarrow F(u, v) = \operatorname{sinc}(au)\operatorname{sinc}(bv)$$

$$a = 12, b = 6$$

2次元フーリエ変換の計算例-短形1-

$$f(x, y) = \operatorname{rect}(\frac{x}{a})\operatorname{rect}(\frac{y}{b}) \Leftrightarrow F(u, v) = \operatorname{sinc}(au)\operatorname{sinc}(bv)$$

$$a = 6, b = 24$$

a = 6, b = 64

2次元フーリエ変換の計算例-円形1-

$$f(x, y) = circ(\frac{r}{d})$$
 $r = \sqrt{x^2 + y^2}$ $F(u, v) = \pi d^2 \frac{J_1(\pi d\rho)}{\pi d\rho}, \quad \rho = \sqrt{u^2 + v^2}$

2次元フーリエ変換

空間周波数の概念
 2次元フーリエ変換
 代表的な2次元フーリエ変換対
 2次元離散フーリエ変換

2次元離散フーリエ変換

境界部分での不連続によるスペクトル

2次元フーリエ変換の計算例-円形2-

画像のフィルタリング処理

実空間フィルタリング
平滑化(LPF)
エッジ強調(HPF)
Laplacian of Gaussian(LOG)フィルタ(BPF)
周波数空間フィルタリング
LPF, HPF, BPF
周波数選択的フィルタ
線形シフトインバリアントシステムと劣化画像復元
線形システム
劣化画像の復元
MATLABを用いたデモ

フーリエ面での処理

IPF, BPF, HPF, 部分的なフィルタ (特定周波数成分の除去, 周期構造をもつノイズの除去)
 Wiener フィルタ (周波数ごとのSN比を考慮した復元フィルタ)

コンボリューション定理

処理の等価性

平滑化フィルタ

(フィルタ特性の絶対値をとって表示)

平滑化フィルタの周波数特性

Laplacianフィルタ

ラプラシアンフィルタの周波数特性

Sobel フィルタ

LOGフィルタの周波数特性

Band pass filter

空間周波数フィルタとコンボリューション核の例

空間周波数フィルタ Sharp-cut LPF

周期性のあるノイズの低減

周波数空間の一部にノイ ズのパワーが集中してい るようなとき

重みw(x,y)は(x,y)の近 傍で推定画像の分散が 最小になるように決定.

Digital Image Processing, R. C. Gonzalez and R. E. Woodsから引用

画像のフィルタリング処理

実空間フィルタリング
 平滑化(LPF)
 エッジ強調(HPF)
 Laplacian of Gaussian(LOG)フィルタ(BPF)
 周波数空間フィルタリング
 LPF, HPF, BPF
 周波数選択的フィルタ
 縁形シフトインバリアントシステムと劣化画像復元
 線形システム
 劣化画像の復元
 MATLABを用いたデモ

線形時不変システムまた線形シフトインバリアントシステム

ディラックのデルタ関数 :インパルス関数

入力信号

f(x)

デルタ関数入力に対する応答: インパルス応答

出力信号

出力信号は入力信号と インパルス応答との コンボリューションで 表される.

シフトインバリアントシステム シフトインバリアント:インパルス応答が、シフトによらないこと. h(x)h(x-a)h(x) $\neq h(x-a)$ a Х a 0 0 Χ

シフトインバリアント

2次元(画像)の場合

マント インパルス応答=点光源に対するレンズによる像 (点像分布関数point spread functionとよぶ)

線形システム

線形システム:重ね合わせの原理が成り立つこと

周波数空間で考える(1次元)

結像光学系(2次元の線形システム)

1. 点光源に対するレンズによる像を考える

h(x,y):Point Spread Function(PSF) インパルス応答=点光源に対する像 =点像分布関数または点広がり関数

2. 物体面に光強度分布がある場合を考える

実空間での各関数の2次元フーリエ変換は以下で定義される.

$$F(u,v) = \iint_{-\infty\infty}^{\infty} f(x,y) \exp[-j2\pi(ux+vy)]dxdy$$

$$H(u,v) = \iint_{-\infty\infty}^{\infty} h(x,y) \exp[-j2\pi(ux+vy)]dxdy$$

$$G(u,v) = \iint_{-\infty\infty}^{\infty} g(x,y) \exp[-j2\pi(ux+vy)]dxdy$$
Cの式を使って、1次元の場合と同様、以下の関係が導かれる
- 実空間

$$g(x,y) = h(x,y)*f(x,y)$$

$$= \iint_{-\infty\infty}^{\infty} h(x-\xi,y-\eta)f(\xi,\eta)d\xid\eta$$

$$\exists v, y = v = v$$

H(u,v): Optical Transfer Function (OTF) |H(u,v)|:Modulation Transfer Function(MTF) $_{41}^{41}$

$$g(x, y) = H(\rho_0) \cos 2\pi (u_0 x + v_0 y)$$

= $-|H(\rho_0)| \cos 2\pi (u_0 x + v_0 y)$

流 れ 劣 化 の OTF

流れ劣化の撮影実験

この被写体を、故意に左右に手ブレさせながら、 カメラで撮影する。

流れ劣化の特性

流れ劣化の観測画像

オリジナルパターン

Wiener Filter

劣化画像の復元などに用いられる

