

JPAC 2008 Fundamentals of Image Technology

Contents

June 2, 2008 Hideaki Haneishi

Sampling and quantization

Tone mapping

Pixel-wise operation between multiple images

Filtering





Pixel value at position (i,j): f(i,j) or  $f_{ij}$ 

Digitization is performed by sampling and quantization.



# Sampling and quantization

**One-dimensional explanation** 



Sampling is to take the data discretely from a continuous signal in a certain interval.



At each sampling point, continuous value f(x) is approximated by a proper integer.

Quantization level: Quantization is usually done into 2<sup>n</sup> levels (n corresponds to the # of bits) 8bits⇒256 levels 10bits⇒1024 levels



If the rapidly oscillating wave is sampled in coarse interval, how is sampled data?



Apparent signal becomes a slow wave.

#### Sampling theorem

If the sampling satisfies the following condition, original continuous signal can fully be recovered from the sampled data.



Two-dimensional sampling and quantization

















JPAC 2008

### Contents

June 2, 2008 Hideaki Haneishi

Sampling and quantization

Tone mapping

Pixel-wise operation between multiple images

Filtering



# Tone mapping (point processing)





# general expression g(x,y) = T[f(x,y)]





# general expression g(x,y) = T[f(x,y)]

#### A linear transformation g(x,y) = af(x,y) + bExample (from demo of MATLAB) contrast brightness JImage Histogram and Intensity Adjustment Demo - 🗆 🗙 編集(E) 表示(V) 挿入① ツール(T) ウィントウ(W) ヘルフ°(H) ファイル(F) Select an Image: Output vs. Input Intensity Rice • Adjusted Image 0.5 0, 0.5 Gamma 1 Operations: Histogram Histogram Intensity Adjustment • + Brightness - Brightness + Contrast - Contrast + Gamma - Gamma 情報 Close



# general expression g(x,y) = T[f(x,y)]

#### A non-linear transformation

 $g(x,y) = [f(x,y)]^{\gamma}$ 





#### Example (from demo of MATLAB)



![](_page_15_Picture_0.jpeg)

JPAC 2008

### Contents

June 2, 2008 Hideaki Haneishi

Sampling and quantization

Tone mapping

Pixel-wise operation between multiple images

Filtering

![](_page_16_Picture_0.jpeg)

Noise reduction:

When multiple images with a fixed foreground and random noise are available, averaging those image produces a noise-reduced image.

Obtained image

$$g_{1}(x, y) = f(x, y) + n_{1}(x, y)$$
  

$$g_{2}(x, y) = f(x, y) + n_{2}(x, y)$$
  

$$\vdots$$
  

$$g_{m}(x, y) = f(x, y) + n_{m}(x, y)$$

Processing

$$\overline{g}(x, y) = \frac{1}{m} \sum_{i=1}^{m} g_i(x, y)$$

$$\overline{g}(x, y) = \frac{1}{m} \sum_{i=1}^{m} f(x, y) + \frac{1}{m} \sum_{i=1}^{m} n_i(x, y)$$
$$= f(x, y) + \frac{1}{m} \sum_{i=1}^{m} n_i(x, y)$$

Noise components are averaged.

![](_page_16_Figure_11.jpeg)

![](_page_17_Picture_0.jpeg)

## Image addition - example -

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

![](_page_18_Picture_0.jpeg)

In a model that subjects of interest (foreground) is added to the background, if an image of background only is available, the subjects are enhanced by subtracting the background image from foreground + background Image.

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

![](_page_19_Picture_0.jpeg)

In a model that subjects of interest (foreground) is illuminated non-uniformly, if the illumination distribution is obtained as an image, non-uniformity is corrected by dividing the image of the subject by the illumination distribution.

![](_page_19_Figure_3.jpeg)

g(x, y)

i(x, y)

![](_page_19_Picture_6.jpeg)

21

![](_page_20_Picture_0.jpeg)

JPAC 2008

### Contents

June 2, 2008 Hideaki Haneishi

Sampling and quantization

Tone mapping

Pixel-wise operation between multiple images

#### **Filtering**