Contents

Sampling and quantization

Tone mapping

Pixel-wise operation between multiple images

Filtering

Exercise of filtering
Digitization is performed by sampling and quantization.
Sampling and quantization

One-dimensional explanation

Sampling

At each sampling point, continuous value $f(x)$ is approximated by a proper integer.

Quantization

Quantization is usually done into 2^n levels (n corresponds to the # of bits)

- 8bits ⇒ 256 levels
- 10bits ⇒ 1024 levels
- ...

At each sampling point, continuous value $f(x)$ is approximated by a proper integer.

Signal intensity

$f(x)$

At each sampling point, continuous value $f(x)$ is approximated by a proper integer.

Quantization level: 10bits ⇒ 1024 levels

At each sampling point, continuous value $f(x)$ is approximated by a proper integer.

Signal intensity

$f(x_i)$

0 255

At each sampling point, continuous value $f(x)$ is approximated by a proper integer.

Quantization level: 10bits ⇒ 1024 levels

At each sampling point, continuous value $f(x)$ is approximated by a proper integer.
Sampling theorem

If the rapidly oscillating wave is sampled in coarse interval, how is sampled data?

Original continuous signal
Sampled signal

Apparent signal becomes a slow wave.

Sampling theorem

If the sampling satisfies the following condition, original continuous signal can fully be recovered from the sampled data.

$$\Delta x \leq \frac{1}{2u_{max}}$$

Δx: sampling pitch
u_{max}: Maximum frequency that the original continuous signal includes.

Just the case that $\Delta x = \frac{1}{2u_{max}}$
Two-dimensional sampling and quantization

Sampling → quantization

\[f_{ij} \]

Quantization:

- 0
- 255

Sampling:

\[x \rightarrow y \]
Simulation of sampling and quantization
Contents

Sampling and quantization

Tone mapping

Pixel-wise operation between multiple images

Filtering

Exercise of filtering
Tone mapping (point processing)

General expression of tone mapping

\[g(x, y) = T[f(x, y)] \]

- \(f(x, y) \): input image
- \(g(x, y) \): processed image
- \(T[] \): tone mapping operator

Tone mapping is performed pixel by pixel.

Examples of tone mapping
- Linear transformation
- Nonlinear transformation using gamma
- Histogram equalization

Example of tone mapping
Increase/decrease of brightness

general expression \(g(x, y) = T[f(x, y)] \)

A linear transformation
\[g(x, y) = af(x, y) + b \]

Example (from demo of MATLAB)
Increase/decrease of contrast

general expression \[g(x, y) = T[f(x, y)] \]

A linear transformation
\[g(x, y) = af(x, y) + b \]

Example (from demo of MATLAB)
Increase/decrease of contrast

General expression: \(g(x, y) = T[f(x, y)] \)

A non-linear transformation

\[g(x, y) = \left[f(x, y) \right]^\gamma \]

Example (from demo of MATLAB)
Histogram equalization

Example (from demo of MATLAB)
Contents

Sampling and quantization

Tone mapping

Pixel-wise operation between multiple images

Filtering

Exercise of filtering
Noise reduction:
When multiple images with a fixed foreground and random noise are available, averaging those images produces a noise-reduced image.

Obtained image

\[g_1(x, y) = f(x, y) + n_1(x, y) \]
\[g_2(x, y) = f(x, y) + n_2(x, y) \]
\[\vdots \]
\[g_m(x, y) = f(x, y) + n_m(x, y) \]

Processing

\[\bar{g}(x, y) = \frac{1}{m} \sum_{i=1}^{m} g_i(x, y) \]

Effect

\[\bar{g}(x, y) = \frac{1}{m} \sum_{i=1}^{m} f(x, y) + \frac{1}{m} \sum_{i=1}^{m} n_i(x, y) \]
\[= f(x, y) + \frac{1}{m} \sum_{i=1}^{m} n_i(x, y) \]

Noise components are averaged.

Variance of noise decreases as \(\frac{\sigma^2}{m} \)
\(\Leftrightarrow \) SD of noise decreases as \(\frac{\sigma}{\sqrt{m}} \)
Image addition - example -

No addition

Average of 10 images
Image subtraction

In a model that subjects of interest (foreground) is added to the background, if an image of background only is available, the subjects are enhanced by subtracting the background image from foreground + background Image.

Obtained image

\[
g(x, y) = f(x, y) + b(x, y)
\]

and

\[
b(x, y)
\]

Processing

\[
h(x, y) = g(x, y) - b(x, y)
\]

Effect

\[
h(x, y) = [f(x, y) + b(x, y)] - b(x, y)
\]

\[
= f(x, y)
\]

Example

\[
g(x, y)
\]

\[
\]

\[
\]

\[
h(x, y)
\]
In a model that subjects of interest (foreground) is illuminated non-uniformly, if the illumination distribution is obtained as an image, non-uniformity is corrected by dividing the image of the subject by the illumination distribution.

\[
g(x, y) = i(x, y) f(x, y)
\]
and

\[
i(x, y)
\]

\[
h(x, y) = \frac{g(x, y)}{i(x, y)} = f(x, y)
\]

Example

\[
g(x, y) / i(x, y) = f(x, y)
\]
Contents

Sampling and quantization
Tone mapping
Pixel-wise operation between multiple images

Filtering
Exercise of filtering